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ABSTRACT

We describe a visualization-assisted process for the verification
of cosmological simulation codes. The need for code verification
stems from the requirement for very accurate predictions in order
to interpret observational data confidently. We compare different
simulation algorithms in order to reliably predict differences in sim-
ulation results and understand their dependence on input parameter
settings. Our verification process consists of the integration of itera-
tive hypothesis-verification with comparative, feature and quantita-
tive visualization. We validate this process by verifying the time
evolution results of three different cosmology simulation codes.
The purpose of this verification is to study the accuracy of AMR
methods versus other N-body simulation methods for cosmological
simulations.

Keywords: Visualization in Earth, Space, and Environmental Sci-
ences; Hypothesis Testing, Visual Evidence; Feature Detection and
Tracking

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

Understanding the physics of dark energy and dark matter – the
two components dominating the content of the Universe – is the
foremost challenge in cosmology today. This task requires very
accurate predictions from high-performance simulation codes to in-
terpret the observational data from ground and space based cosmol-
ogy missions. Structure formation is very sensitive to the physics of
dark energy. Current observations constrain the nature of dark en-
ergy at the 10% level. In order to go the next step, observations and
modeling have to improve by an order of magnitude. To achieve this
goal with respect to the modeling, extensive code verification exer-
cises have to be carried out. Code verification in this context means
that the accuracy of the algorithm used to solve the set of equations
underlying our physical model is understood and controlled. Often
this is achieved by numerically solving problems with a known an-
alytic solution and evaluating how well the algorithm handles the
problem. Cosmological simulations are highly nonlinear and while
exactly solvable problems give some hints about the accuracy of the
algorithms they do not capture the full problem to be solved. An im-
portant part of the verification process is therefore the comparison
of different algorithms, along with characterization and understand-
ing of the differences in the results.

The contribution of this paper is the description and real-world
evaluation of a visualization-assisted process for code verifica-
tion. We integrate iterative hypothesis-verification with compar-
ative, feature and quantitative visualization to facilitate this objec-
tive. The first step is based on a qualitative comparison of the dif-
ferent code results through comparative visualization. In this way
feature-based differences can be easily and efficiently identified. In

the next step, a hypothesis for the cause of the differences is formu-
lated in such a way that it can be tested in a quantitative manner.
Quantitative comparative visualization is used to test the hypothe-
sis. The visualization leads to new insights and questions, that then
can be tested in qualitative ways – the process is iterative and allows
us with every step to gain a deeper understanding of the underlying
simulations. We believe this elucidation of specific visualization
processes that help achieve a specific goal (in this case, code ver-
ification) is critical to understanding and advancing the science of
visualization. Our metrics for success are the speed and ease we ob-
tain verification results when we apply our process to a real-world
verification problem. Specifically, we demonstrate with two cos-
mological code verification tasks how the process works.

This paper is organized as follows. In Section 2 we provide a
brief overview of previous work. We describe in detail the code
verification task and outline the visualization process in Section 3.
A detailed account of how the process applies to two examples is
presented in Section 4. In Section 5, we conclude and provide fu-
ture directions.

2 RELATED WORK

In this section, we describe related approaches. We classify these
approaches into three categories: iterative hypothesis-verification,
comparative visualization and feature extraction/quantitative anal-
ysis.

2.1 Iterative Hypothesis-Verification

Chen et al. [1] describe the visualization process as an iterative
search process. Each iteration produces a visualization that may
increase the user’s information and knowledge. In the general case,
the search space is extremely large. For example, parameters such
as types of visualization algorithms, configuration of these algo-
rithms and view positions are just some of the search space that can
be considered.

Kehrer et al. [8] quickly explore this search space by rapidly gen-
erating promising hypotheses. Specifically, they seek to identify
regions in climate data which are sensitive to atmospheric climate
change and then statistically verify whether or not these regions are
robust indicators of climate change. Iterative visualization and in-
teraction was used with sensitivity metrics to narrow down regions
of interest.

Our work is different from Kehrer et al.’s in that we narrow the
search space by focusing on code verification and provide a struc-
tured process for traversing the space. Our iterative process builds
up qualitative and quantitative evidence that highlights the differ-
ences between the codes being verified.

2.2 Comparative Visualization

Our work endeavors to understand the sources of inconsistency be-
tween different cosmology codes. It starts with perceiving the dif-
ference in the simulation results through comparative visualization.
Comparative visualization supports the ability to visually study,
multiple related visualizations.

Spreadsheets/small multiples are a common method to present
visual differences [7, 9], and have been adopted in many visualiza-
tion tools. Features can be enhanced to make user judgment eas-
ier [14, 22]. Recently, researchers started to address the potential



“change blindness” in the side-by-side comparative visualization;
for example, by visualizing results from different simulations in the
same volume [5]. We attempted to use a visual differencing scheme
similiar to [5] but because of the significant differences between
the simulation codes visually cluttered results were generated. At
this time, cosmologists prefer side-by-side comparsions instead of
more advanced differencing methods because side-by-side compar-
isons offer direct visual confirmation about the properities of the
source data as well as the ability to intuit differences. Side-by-side
comparisons can easily be generated automatically. For example,
“Show Me” [10] is an integrated set of user interface commands
and defaults that incorporate automatic comparative presentations
into a commercial visual analysis system called Tableau. Unfor-
tunately, “Show Me” is designed to handle spreadsheet data, not
large-scale spatial-based scientific data. Our process incorporates
automated side-by-side comparsion of simulations results.

2.3 Feature Extraction and Quantitative Analysis

One difficulty in the visualization and quantitative analysis of cos-
mological datasets is the massive size of the cosmological dataset.
Directly visualizing every particle in these datasets via a glyph,
such as a point or sphere, introduces visual clutter, making impor-
tant structures not easily discernible in the resulting images.

To address this problem researchers have pioneered the use of
feature-based approaches to extract meaningful higher-level struc-
ture from scientific datasets [18, 19]. A feature is, by definition,
a region in the dataset that satisfies certain constraints [18]. The
exact definition of a feature varies by domains. For example, an
ocean eddy, a feature of interest in oceanography, is defined as a
flow with semi-closed circulation pattern [23]. Navrátil et al. [12]
convert particle data from a cosmological simulation into a grid-
based representation from which it is easier to extract structural in-
formation. In general, a feature describes a coherent structure – an
“effect” that persists for a significant amount of time [20]. In the
cosmological context, the halo (a cluster of particles) is a common
feature of interest. A feature-based approach allows users to extract
features and to visualize, track, isolate, and quantify their evolution.
A key to success is the efficient extraction of the features of inter-
est. In this paper, we present efficient feature analysis methods for
particle-based cosmological data.

Quantitative visualization, by definition, allows the user to ex-
tract quantitative information directly from the visual presentation.
Peskin et al. started to advocate for its interactive form [15] to
enhance scientific and engineering computational simulation proto-
typing. Recent efforts include query-driven visualization [3, 4, 17],
and quantitative visualization programming languages [11]. We
support the combination of feature-extraction and quantitative vi-
sualization by emphasizing the creation and use of measurable fea-
tures to help quantify the differences between simulations.

3 PROBLEM: VERIFICATION OF COSMOLOGY CODES

We propose a feature-based visualization-assisted process to sim-
plify the verification of cosmology codes. In this section, we pro-
vide a description of the verification task and the new process to
solve it. We also describe the tool support needed to instantiate the
process.

3.1 Code Verification Task

The aim in this paper is to characterize differences in the results
from three cosmology codes started from the same initial condi-
tions at redshift z = 50 and to identify the causes underlying these
differences. 1

1In cosmological simulation, redshift z is often used to specify time

points. In contrast to typical time-point progression that increases time-

point values, redshift progression decreases redshift values. For these simu-

lations, time runs from z=50 (the big bang) to z=0 (present day).

3.1.1 Cosmology Codes

The three cosmology codes under investigation are GADGET-
2 [21], MC2 [16], and Enzo [13]. Each of these codes were in-
dependently developed by different groups at institutions around
the world, GADGET-2 at the Max Planck Institute, MC2 at Los
Alamos and Enzo at UC San Diego. While all three codes are solv-
ing the same N-body problem – the evolution of the dark matter
distribution in an expanding universe – their underlying algorithms
are rather different. Simulation algorithms employed to investigate
structure formation range from grid-based methods (particle mesh
(PM) and adaptive mesh refinement (AMR) methods) to tree-based
methods to mixed methods such as tree-PM. MC2 and Enzo fall in
the first category (MC2 being a pure PM code and Enzo being an
AMR code) while GADGET-2 is a tree-PM code. All three codes
are well-established and have been used extensively for cosmolog-
ical simulations.

3.1.2 Initial Conditions

Maintaining the accuracy of cosmological simulations is challeng-
ing due to the multi-scale complexity in the time and spatial range.
The spatial dynamics range of realistic problems is anywhere be-
tween two to five orders of magnitude. Therefore, we can design
an experiment in a regime that demands high resolution to verify
whether these codes reach the desired accuracy for gravitational in-
teractions alone.

We investigate the simulation of the Standard Model of cosmol-
ogy in a box with 90.14 Megaparsec (Mpc) in each dimension. 2

Due to the small size of the simulation box, the force resolution of
all codes is, in principle, sufficient to capture properties of individ-
ual features. Each simulation was run with 2563 particles.

3.2 Problem Solution: A Code Verification Process

Our specific code verification process is as follows:

Registration of the codes: First the codes are registered making
sure all measurable axes, such as time steps and spatial coordinates,
are in agreement.

• Step 1: Define/refine features: In this step, a measurable
feature is defined and an algorithm is coded that identifies the
feature in the scientific data. This may be as simple as a den-
sity metric or as complex as a precise structural feature.

• Step 2: Formulate/refine hypothesis about a measurable
difference between the simulation codes: Given the feature
defined in Step 1, the scientist makes a hypothesis about the
simulation codes. The feature-extraction algorithm is applied
to all codes to create a measurement for each code and these
measurements are compared.

• Step 3: Qualitative comparative visualization:3 The 3D
visualizations created in this step are side-by-side compar-
isons that visually highlight the differences between the sim-
ulations. This step requires some visualization expertise to
effectively identify simulation differences.

• Step 4: Quantitative comparative visualization: The 2D
plots created in this step are side-by-side comparisons that
highlight the quantitative differences between the simulations.
Quantitative results reinforce the hypothesis verification.

2Each Mpc is equal to 3,262,000 light years or 2×1019 miles.
3We use the word qualitative to describe 3D visualizations and the word

quantitative to describe 2D plots. Clearly, 3D visualizations present quanti-

tative data. However, we use these words to identify how 3D visualization

(for exploration and intuition) and 2D plots (for measurements and analysis)

are typically used by cosmologists in the visualization process.



Repeat starting at step 1 until the codes are verified.

There are number of benefits to this process. The first is that the
verification process now has a well defined structure. As features
are identified and the feature extraction method is coded, these ad-
vances can be reused to identify more sophisticated features and
improved measurements. The scientific method demands quanti-
tative evidence to support or refute a given hypothesis; our process
contains the generation of this evidence as a key step. We recognize
that the definition of the features and the development of extraction
algorithms is the longest step in the process, however, the planned
integration of these algorithms into the visualization process and
planned reuse of these feature extraction methods should reduce
the overall coding burden.

3.3 Application of the Verification Process

Registration of the Cosmology Codes

In order to register the cosmology codes, two technical issues
need to be resolved. The first issue is that different codes use dif-
ferent time steps. As a consequence, the result from each code
contains a set of snapshots of the simulation box for a different set
of time points. We selected a sequence of reference time points.
The results from each code are interpolated linearly, if necessary,
to match with the sequence of reference time points. This way, we
can compare snapshots of results from all three codes at the same
time scale.

Another technical issue is that different codes assign particle IDs
differently. As a result, we may need an additional analysis step to
correlate particle IDs across multiple cosmology codes in order to
track the motion of a particle in different codes.

Step 1: Define/refine measurement feature

In the cosmology community, the halo paradigm is central to
the analysis of dark-matter simulations. Unfortunately there is no
unique algorithmic definition for identifying a dark matter halo. In
this paper we use exclusively a common cosmological definition,
the Friends-of-Friends (FOF) metric [2]. In this definition, a pair
of particles are designated as friends if their distance in space is
within a certain threshold called linking length. A halo is defined
as a set of particles connected by one or more friendship relations,
i.e., friends-of-friends.

The linking length is measured in units of the mean inter-particle
spacing. In this paper, we use 0.2 as the linking length. We require
that the objects we find have at least ten particles before we call
them “halos”. The purpose of this threshold is to reject spurious
halos, i.e., groups of friends that do not form graviationally-bound
objects in the simulation. Finally, we distinguish between the mass
and the size of a halo. The mass is the number of particles form-
ing the halo whereas the size is reserved for spatial dimensionality.
The specific linking length, particle threshold, and FOF algorithm
provide a community accepted density threshold estimator to find
gravitationally-bound objects that is considered reliable to compare
simulation codes.

A straight-forward halo-finding algorithm based on FOF is to
check each and every pair of particles to determine whether they
are friends or not. Mathematically, the algorithm can be described
as follows:

∀(i, j), i 6= j, if d(i, j)< l then union(i, j)

where i and j are particle IDs, d(i, j) is the Euclidean distance be-
tween the two particles, l is the user-defined threshold value, and
union is a book-keeping operation that indicates that the two parti-
cles are in the same group. Given n particles, a baseline time com-
plexity of the algorithm is O(n2) – if each union operation has an
O(1) average cost. Obviously, such an implementation will hinder
interactivity when n becomes large.

We improve the performance of the above algorithm by reducing
the number of pairs (i, j) examined. This reduction is facilitated via
a balanced kd-tree. A balanced kd-tree is a data structure that orga-
nizes points in a k-dimensional space in such a way that the number
of points in a subtree at each level are equal. Building a balanced
kd-tree from n points takes O(n logn) operations. A recursive al-
gorithm starts at the leaf nodes (single particles) and merges nodes
into halos by checking if the particles are within range of each other.
As particles are merged, subtree bounding boxes are used to skip
the testing and merging of spatially distant subtrees. The cost of
the algorithm, primarily in the merge step, is data dependent based
on the number of particles in a halo. Our new algorithm only takes
two minutes to analyze 2563 particles, and efficiently processes the
hundreds of data files necessary to perform this verification study.
It is now in daily use by the cosmologists to analyze their results.

Step 2: Formulate/refine hypothesis about a measurable differ-
ence between the simulation codes

Specific hypotheses will be explored in the case studies pre-
sented in Section 4.

Step 3, 4: Qualitative and quantitative comparative visualiza-
tion

Qualitative and quantitative visualization support is offered in
ParaView. ParaView is an open-source, multi-platform data anal-
ysis and visualization application. In ParaView the user can au-
tomatically set up a collection of related 3D visualizations or 2D
plots in a one or two dimensional configuration. The user identi-
fies the parameter that will change along each axis and the num-
ber of frames horizontally and vertically. The visualizations in the
frames are linked so that the same interactively selected view angle
is shown. We ran our verification process within ParaView. The use
of ParaView is not required, as any visualization tool that supports
the integration of new code and offers comparative qualitative and
quantitative visualization tools can be used.

4 CASE STUDIES: EVOLUTION OF THE HALO POPULATION

In the following we demonstrate with two examples how the
feature-based, visualization-assisted process can be used in a sci-
entific setting to answer specific questions in an efficient and seam-
less way. We will document the specific scientific process we went
through in detail to verify the cosmology codes and highlight how
the process led us quickly to key scientific results. We consider
the speed and ease that the cosmologists were able to verify their
simulations to be one of the best tests of the effectiveness of our vi-
sualization approach. In the first example we study the evolution of
the entire halo population in the simulation with time. This exam-
ple addresses questions about statistical measures from the simula-
tions, such as halo counts as function of mass and time and there-
fore global results of the simulations. In the second example we
carry out a focused study of the formation of one particular halo, a
localized feature in the simulation. This halo was chosen due to its
anomalous shape which complicates very accurate simulation. Spe-
cific small scale features of the halo and the ability of the simulation
codes to track and resolve these features are of central interest.

4.1 The Evolution of the Halo Population

The number of halos as a function of their mass is called the halo
mass function (or short: mass function). The mass function and
its time evolution contains a lot of information about the formation
of cosmological structures. The precise measurement of the mass
function from observations and its prediction from theory are a field
of very active research in cosmology. In the following we will show
how our approach can be utilized to find a reliable and accurate
prediction of the mass function and its evolution. The features of
interest in this case are the halos themselves and their masses. As
explained in the last section, an efficient halo finder has been devel-
oped to extract these features from the simulation – Step 1 in our



Figure 1: Comparative visualization of the distribution of the halos for the simulation results at z = 0. Each halo is represented by a dot. It is
immediately obvious from these images that Enzo has fewer halos throughout the simulation volume and that therefore our Hypothesis 1 is false.
The black circles mark the position of Halo 3. The formation history of Halo 3 will be discussed in detail in our second case study.

process.
A popular N-body algorithm for large-scale structure formation

simulations is the adaptive mesh refinement (AMR) method. In
AMR codes the simulation starts out with a uniform grid (the base
grid) and refines specific regions in the simulation at higher reso-
lution as time evolves. In cosmological simulations, the refinement
criterion is usually set by a density threshold: if a certain density is
reached, the grid is refined. We refer to the highest level of refine-
ment as peak resolution. The AMR method has previously success-
fully been used in the simulation of single objects, e.g., supernovae.
In cosmology, the simulation starts with a smooth Gaussian density
field and over time high density region evolves. Therefore, AMR
methods seem to be a natural way to perform such simulations: the
hope is that higher resolution is only needed in high density regions
and at later times. This would make the simulation requirements
much easier to handle and save computational costs. These benefits
of AMR methods need to be tested, leading to Step 2 in the process
– the formulation of

Hypothesis 1: An AMR code with a peak resolution equiva-
lent to a uniform grid code should resolve all halos of interest.

In order to test this hypothesis, three simulations are carried out:
one with Enzo, an AMR code, with a 2563 base mesh and two lev-
els of refinement leading to a 10243 mesh peak resolution. For
comparison, the second simulation is carried out with a pure mesh
code, MC2, with a 10243 mesh all throughout the evolution. To
provide a second reference simulation, we also perform a third run
with a high-resolution tree-PM code, GADGET-2. We store from
each simulation 100 time snapshots.

Following Section 3, in Step 3 we test our hypothesis by per-
forming a qualitative visualization comparison. Since the feature
extraction algorithm (in this case the halo finder) is already inte-
grated in the visualization tool, this step is now very easy and ef-
ficient. We visualize the halos from the three simulations at the
last time step. The results are shown in Figure 1. In this case the
visual interpretation of the result is very easy: our hypothesis is
false. Visually Enzo has obviously far fewer halos. In Step 4 we
find that Enzo has 29099 halos, MC2 49293 halos, and GADGET-2
has 55512 halos. Therefore, we need to refine our hypothesis. One
could argue that the pure halo count would have been enough to
falsify our hypothesis. The visualization of the distribution of the
halos contains much more information than a pure number though,
it has spatial information about the halos. Figure 1 already hints
at the fact that the halo count is different in the entire simulation
volume and not just in specific regions where the AMR code might
not have refined to the highest level of resolution.

4.1.1 Discussion

• An alternative to incoporating the feature extraction code
within the visualization tool as we require in Step 1 of our
process is the creation of the feature extraction code in the
simulation. In practice, the simulations have their own unique
analysis methods as part of the simulation code making the
comparisons of these methods difficult. In addition, there is a
sigificant time lag in the visual analysis workflow if the user
needs to re-run each simulation in order to produce feature
outputs for the comparative visual analysis step.

• An alternative for Step 3 is to produce the side-by-side visual-
izations by hand by varying the parameters to the visualization
tool. For example for Figure 1, the scientists would need to
input each different simulation names and use the same visu-
alization pipeline to generate seperate visualization windows.
Managing these parameter changes and windows by hand is
tedious task. Our process supports the automatic generation
and management of comparative visualizations. In practice,
this automation reduces the time to complete Step 3 to sec-
onds versus minutes or hours when the scientist is forced to
do this by hand.

• One alternative is to rely on purely analyticial methods. In our
process, we require visual inspection of the data as well (i.e.
Step 3), and we have found that this typically provides siginif-
icant additional insight (in this case, the data’s spatial distri-
bution) which drives the verification process forward quicker
than a pure analtyical approach.

Next, we aim to refine our hypothesis in such a way that we gain
a clear understanding why Hypothesis 1 was false. Two possible,
related explanations for the deficit of halos could be:

Hypothesis 2a: The halos do not form at early times when the
base resolution is still very low and cannot be recovered later.

Hypothesis 2b: Only halos of a certain size – dictated by the
base grid and not by the peak resolution – can be captured cor-
rectly.

With the refinement of the first hypothesis, we also focus now on
an additional feature in the simulation: the halo mass itself. This
“feature” is automatically provided by the halo finder and will be
very important to understand our results in more detail. We can
test our two new hypotheses in one step by (i) dividing the halos
into mass bins, (ii) tracking the number of halos forming in the
simulation over time in these separate mass bins.



Figure 2: First three columns: comparative qualitative visualization of the distribution of the halos in different mass ranges (light to extra-heavy
from top to bottom) at a single time step z = 0. Throughout the paper we present results from GADGET-2 in red, from MC2 in green, and from
Enzo in blue. A light halo contains 10-40 particles, a medium halo contains 41-300 particles, a heavy halo contains 301-2500 and an extra-heavy
halo contains more than 2500 particles. Fourth column: comparative quantitative visualization of the number of halos in different mass ranges.
In addition, information about the time evolution of the number of halos is shown. While the qualitative approach contains spatial information, the
quantitative plots have extra temporal information. The combination of both allow the assessment of the validity of hypothesis 2a and 2b.

In [6] a simple criterion was derived for the force resolution re-
quired to resolve a halo of a certain size. The force resolution of
Enzo’s base grid would allow to capture halos with more than 2500
particles, the first refinement level would allow the resolution of
halos with more than 300 particles, and the highest refinement grid
would allow the resolution of halos as light as 40 particles. Since
MC2 uniform base resolution is equivalent to Enzo’s peak resolu-
tion, MC2 should reliably capture halos with at least 40 particles.
While halos with fewer particles are often unphysical (random par-
ticles which are by chance close to each other get linked together
even though they do not form a bound structure) we also investi-
gate halos with less than 40 particles to demonstrate the robustness
of our hypothesis 2b. The final results of our comparative qualita-
tive and quantitative visualization analysis are summarized in Fig-
ure 2. We would like to emphasize that this figure only shows the
summary of an interactive process in which the linked-view com-
parative visualization techniques were used to get a better intuitive
understanding of the simulations to answer the scientific question.

From top to bottom, Figure 2 shows the different mass ranges
described above, starting with the lightest halo and ending with the
heaviest halo. The first three columns show the results for the dif-
ferent simulations at the final redshift and column four presents the
quantitative results including time evolution. The qualitative in-
spection of the simulation results through visualization (column 1 -
3) in this case does not lead to an immediate answer as it did in the
previous case. It is clear visually in the figure that Enzo has fewer
light halos and most likely also fewer medium halos. A judgment
about the number of heavy and extra-heavy halos by inspection of
the qualitative plots is not possible and this time Step 4 in our pro-

cess becomes essential. In column 4 in Figure 2 the results from
column 1 - 3 are displayed in a quantitative manner: we show the
number of halos and the evolution over time in four different mass
bins. The colors of the curves correspond to the coloring scheme
of the visualization of the simulations. Now it is easy to see that
Enzo has a large deficit in the halo count for the light and medium
halos and also a lack of heavy halos. Only the very heavy halos are
captured by Enzo correctly. We therefore have confirmed that our
hypothesis 2b is correct. Figure 2 also contains information about
Hypothesis 2a: it is very clear that the deficit of halos in the Enzo
simulation is rooted at early times: halos are missing from the be-
ginning and cannot be recovered over time (e.g. the curve for the
medium halos is not catching up with the MC2 result at later times).

At this point, the verification process is successfully completed:
we now have a good understanding of what halos can be captured
reliably by AMR codes. We verified a criterion for the halo masses
that can be resolved given a certain force resolution. Of course the
performance of AMR codes can easily be improved by either start-
ing the simulation with a much larger base grid or setting the re-
finement criteria much more aggressive so that the refinement starts
long before the first halos form.

4.1.2 Discussion

• Our visualization process structures the visual analysis so that
it produces a chain of documentary evidence that supports the
verification process. The hypothesis text and Figure 1 and 2
were used to present the verification issues to the Enzo scien-
tific team.

• Our visualization process requires interactive exploration. It



Figure 3: Comparative qualitative visualization: Four different time snapshots of the formation of Halo 3 at z = 5, 3, 2 and z = 1. The spheres
represent halos in four different mass bins (light, medium, heavy, extra-heavy), the size of the spheres is scaled with respect to the mass bin the
halo belongs to. The intensity of color contains information about the density environment in which the halos live: three intensity levels are used
to reflect three density levels: low, medium, and high, and the darker the color, the higher the density. Particles which do not belong to any halo
are shown as yellow dots. At the final time step, not shown here, all particles and halos will belong to the final Halo 3. As in the previous case
study, red is reserved for GADGET-2, green for MC2, and blue for Enzo. The region we are investigating is approximately 5 Mpc wide.



is hard to convey in a static publication the “search” aspect of
this process (i.e. working to identify a qualitiative and quan-
titative measure that would distinguish between the simula-
tions). Alternative approaches that did not include this in-
teractive visualization “trial and error” process might have
missed the key aspects (i.e. formation issues based on den-
sity regions) that we are able to find through our comparative
visualization exploration process.

4.2 Halo Formation Process

In the last section, we have established that the ability of AMR
codes with standard refinement settings to resolve halos of a certain
size is dictated by the size of the base grid and not by the peak res-
olution. The next obvious question is: are the structures within the
extra-heavy halos resolved at the level of the peak resolution or will
details be missing which were not seeded at early times where the
base grid dominated the simulation? If the AMR code would not be
able to resolve features in a high-density region and would resolve
features at the base grid resolution, the use of AMR for cosmo-
logical gravity only simulations would become less attractive. We
beleive that applying our process to this different problem (small-
scale vs. large-scale structure formation) we further document the
benefits of our structured visualization process for verification.

To answer these questions, we present a second case study in
which we closely follow the formation of the third heaviest halo
(Halo 3) in the simulation. Its position within the full simulation is
marked in Figure 1 by black circles. We choose this particular halo
because of its anomalous shape. A large fraction of halos (∼ 80%)
are relatively spherical and relaxed. They form through accretion of
mass and lighter halos from the surrounding area. Halo 3 is slightly
unusual in that it forms through the merger of several major halos.
This leads to a slightly elongated shape. The formation of Halo 3 is
most likely not complete at z = 0 and in the future this halo would
become more spherical and relaxed. Being still in the formation
phase at the final redshift makes this halo particularly suited for our
aim: we can study the evolution of many small substructures and
investigate if these substructures are reliably resolved by the AMR
code.

In Step 1, we continue to track the formation and evolution of
the halo population that will lead finally to the formation of Halo
3. We also added a new feature of interest, density. The density
is determined by the number of particles inside a sphere of a fixed
diameter (2.82 Mpc) of the halo center. To compute density we
were able to quickly modify the halo finder code to reuse the kd-
tree to count all particles within a given radius from the halo center.
Following our process (Step 2) we formulate the hypothesis:

Hypothesis 1: The AMR code should resolve substructures
in a highly overdense region reliably.

In order to test this hypothesis, we track the evolution of Halo 3
over time. At the final time step, the mass of Halo 3 is the same
for all three codes within a few percent. We identify all particles
which belong to Halo 3 in the final time step and trace them back
via their particle id to earlier times. For each of these earlier time
steps we then identify all the halos in the particle distribution which
will become finally Halo 3. A qualitative comparison for four of the
100 time snapshots is shown in Figure 3. Each halo that was iden-
tified is displayed by a sphere. The spheres are shown in four sizes,
corresponding to light, medium, heavy and extra-heavy halos (the
mass definitions here are the same as in case study I). In addition,
the halos are colored with respect to their surrounding density: the
darker the color, the higher the density. Low density ranges from
0 to 499 particles, medium density ranges from 500-5000 particles
and high density is more than 5000 particles within the sphere. The
visualization presents information about: the masses of the halos,
the environment they live in, and temporal and spatial information.
Following Step 3, we can now verify or falsify our hypothesis. In

Figure 4: Comparative quantitative visualization: Comparison of dif-
ferent halo sizes (top to bottom: light to extra-heavy halos) and of
halo counts in different density regions (left to right: low to high den-
sity region). Each panel shows the time evolution of the halo count in
a specific mass bin and a specific density region. As in the previous
case study, Enzo loses light halos. This time we have the additional
information, that most light halos are lost in lower density regions. At
the final time step, only one extra-heavy halo will remain, which has
absorbed all lighter halos from earlier times. This explains why the
panels in the first three rows all end up at zero at z = 0 and the last
panel in the bottom right corner ends up at one.

the first row at redshift z = 5, Enzo is again missing a large num-
ber of light halos. Especially in regions without heavier halos, this
is very apparent. Over time, the discrepancy seems to decrease,
though even at z = 1 it appears that some of the lighter halos are
missing. The visualization of the halos contains spatial information
that allows us to compare all three simulations in great detail.

The next step, Step 4, is to cast these observations into more
quantitative results. Before we do so, the visual inspection of the
formation history leads to a second hypothesis:

Hypothesis 2: The AMR code loses more light halos in lower
density regions.

Figure 4 holds the definite answer to both of our questions. Here
we show the halo population evolving with time and separated from
top to bottom into light to extra-heavy halos and from left to right
into low, medium, and high density environments. It is very in-
teresting to note that in the high density region (third column) all
codes resolve halos of all sizes reliably. The AMR code also re-
solves heavy halos in all environments reliably (remember, that in
the global case heavy halos were missing in the AMR simulation).
In the low and medium density region, Enzo is not able to capture
all light and medium halos. The great advantage of combining both
quantitative and qualitative comparison becomes very clear if we
compare the results from GADGET-2 and MC2. If we would have
only the quantitative results from Figure 4 we would conclude that
GADGET-2 and MC2 are in almost perfect agreement with respect
to Halo 3. The additional visual spatial information in Figure 3
shows quite a few small differences, which purely statistical mea-
sures such as halo counts would not have revealed.

To summarize the results from this second case study: We falsi-
fied Hypothesis 1: without more aggressive code settings the AMR
code will not be able to resolve all small scale features reliably.



As for the global case, the resolution of the light halos is also a
problem in the local study. Nevertheless, the refinement did help
in capturing medium halos in higher density regions. Following
our code verification visualization process, we were able to draw
the following conclusion about AMR codes and their capabilities
to track structure formation correctly. We found that (i) the base
grid has to be large enough from the start to capture features that
evolve much later, (ii) the refinement criteria (e.g. density thresh-
olds) need to be chosen in such a way, that they capture structure
formation processes early. Once halos are formed, it is usually too
late. Appropriate usage guidance for AMR simulation codes for ac-
curate output is a significant result for the cosmological simulation
community that was found via our visualization process.

4.2.1 Discussion

• Cosmologists found our structured process useful since it en-
forced quantitative evidence gathering and guided their next
exploratory steps in the massive search space of possibilities.
In the past, exploratory visualization and quantitiative anal-
ysis were typically separate tasks. Analysis codes (such as
halo identification) were not integrated within the visualiza-
tion process. By following our process, of generating 3D vi-
sualizations, gaining insight, and then producing 2D quantita-
tive plots the cosmologists were more productive in their code
verification work.

5 CONCLUSIONS AND FUTURE WORK

In this paper we described a visualization-assisted process for the
verification of cosmological simulation codes. The need for code
verification stems from the requirement for very accurate predic-
tions in order to interpret observational data confidently. An im-
portant part of this task is the comparison of different algorithms
so that we are able to reliably predict the differences in the simula-
tion results and understand their dependence on the code parameter
settings.

We presented two case studies that verified the accuracy of AMR
methods versus other N-body simulation methods. We found that
visualization facilitated the process of code verification. Specifi-
cally, we gained insight in the appropriate parameter settings for
AMR cosmology codes. AMR is a common optimization strategy
in many scientific simulation endeavors and our verification pro-
cess can provide guidance for similiar verification projects in other
fields. We found that combining comparative, feature and quan-
titative visualization together greatly improved the efficiency and
insight in performing code verification.

In the future, we plan to improve our visualization process by
making the steps of feature extraction and comparative visualiza-
tion easier to use and more effective and efficient. We will explore
the integration of a quantitative visualization language to simplify
the definition of measurable features. We will include advanced
comparative visualization techniques that incorporate differences in
a single visualization to augment our current side-by-side presenta-
tion.
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